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Representations, Thought and Language:  

Some Psychological and Neurological Considerations 

In this paper, I will discuss several psychological and neurological issues related to the representation of 

concepts and propositions, which are basic elements in a general approach to psychological theory broadly called 

the representational theory of mind. 

To begin with basic assumptions, I assume that “representation” is a construct in psychology. 

Representations are mental constructs; the reflection of a tree in a pond is not a representation of the tree and the 

thought of a tree by a human involves a representation of a tree. Mental constructs are part of psychology, a 

special science with its own, largely if not entirely proprietary, database, and a set of primitives and 

computational operations that provide descriptions and explanations of that database. There is considerable 

debate about these assumptions, with many scientists and philosophers maintaining, or suspecting, that 

constructs and operations described in psychology are replaceable by constructs and operations in a theory of 

neurobiology. I see no reason to believe this is the case now, any more than is the case for reductionism in other 

areas of science, or that it is likely to become the case in the near future.  

Given that psychology is a special science, how is it related to neurobiology? The fact (if it is a fact) that 

psychology is a special science does not, of course, entail that there is no connection between constructs and 

operations specified in psychology and those specified in other sciences, just as there is, presumably, some 

relation between constructs and operations in other sciences (e.g., geology and physics). On the contrary, I think 

that constructs, operations and events specified in psychology correspond to constructs, operations and events in 

neurobiology. It does not follow that constructs, operations and events in psychology are caused by the 

corresponding constructs, operations and events in neurobiology; if there is a causal relation between 

psychological and neurobiological events, the direction of cause-and-effect is unclear. Does having a particular 

pattern of neural firing cause a person to activate a French word, or does activating a French word cause a person 

to have a particular pattern of neural firing? (In a computer analogy, a command in a program cause the 

electromagnetic events in a CPU to change, or do changes in the electromagnetic events in a CPU cause the 

command to have the effect that it does in the program?) As long as psychology and neurobiology have the 

status of independent special sciences, this is an open question. In addition, considering the question more 

broadly, the fact (if it is a fact) that constructs, operations and events in psychology are causally related to 

constructs, operations and events in neurobiology, the causal relation may not be necessary; it may be contingent 

upon these constructs and operations operating in humans. It may be that a silicon-based machine can support 

the same psychology that the neural carbon-based machine does, as Functionalism maintains.  

All that said, even if any relation between psychology and neurology is causal, or its causal relation is 

contingent on the host of the relation being a human, even if and the direction of causality is unspecified, there is 

overwhelming evidence that human psychological processes take place in human neural tissue. This implies that 

these processes must be capable of being instantiated in human neurobiology. Accordingly, in principle, studying 

neural correlates of psychological theories might provide information about those theories. Whether this is true 

in practice is a separate question. At the moment, psychological and neurobiological descriptions are not 

interchangeable. If we want to characterize what a person knows when he knows French, or calculus, or the 

history of the Holy Roman Empire, we have to use terms such as “verb classes,” “variables,” and “battle,” not 

terms such as “BOLD signal coherence,” or “gene expression.” The question I shall discuss here is how much 

neurobiology contributes to models of the nature of representations, at present. 

Views regarding the value of neurobiology for psychological models of cognitive functions have changed 

dramatically in the past 30 years. The change is closely linked to changes in psychological theories. The type 

of psychological model that was most utilized in the 1960s and 70s assumed that cognitive primitives could be 

represented as symbols, and that symbols were related through various types of rules. I will call these 

“symbolic, procedural” models. These theories made use of computer analogies. Psychological predicates were 
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like software; the brain was like hardware; little thought was given to what types of software could run on 

neural hardware. These models largely ignored information about neural elements and systems. Chomsky 

(1994) famously claimed that “the brain sciences … as currently understood, do not provide any basis for what 

appear to be fairly well established conclusions about language.” In contrast, many more recent models, first 

widely adopted in psychology with the 1986 PDP books (Rumelhart, McClelland and the PDP Group, 1986; 

McClelland, Rumelhart and the PDP Group, 1986), have properties that are often inspired – and sometimes 

justified -- by neural considerations. For reasons that will be clear later, I will call these models “probabilistic, 

associative” models. Advocates of these models often argue that they are preferred to symbolic, procedural 

models because they are neurally realistic. It is sometimes claimed – and often felt – that symbolic, procedural 

models are inconsistent with neural reality, which would, of course, entail that they are wrong. I will outline 

these two contrasting types of psychological models, and then discuss neural data that are relevant to each.
 1

 

Psychological Considerations 

Symbolic procedural models: The Representational of Mind (RTM) 

Symbolic-procedural models have been developed in many areas of cognitive psychology (e.g., almost all 

models of linguistic structure and many models of language comprehension and production are of this sort). The 

subject matter of my discussion will be representations of concepts and propositions, constructs that play central 

roles in psychological models of thought. I shall discuss these representations as they have been invoked in a 

broad framework that describes thought -- the Representational of Mind (RTM). RTM is developed in the 

literature in symbolic-procedural terms. 

RTM holds that the cognitive psychological states consist of maintaining a propositional attitude – a 

statement of the form X believes/wants/expects … P, where X is an individual and P is a proposition. Holding 

propositional attitudes and relating them and their embedded propositions to one another constitutes cognitive 

activity and is the mechanism whereby people bring cognition to bear on action. 

RTM is “a loose confederation of ideas Fodor (1998),” not a single model. Fodor (1998) outlines one 

version of RTM, in which the following three statements capture the essence of the theory. 

1. Psychological explanation is nomic and intentional. 

2. Mental representations are the primary bearers of intentional content 

3. Thinking is computation 

Thesis 1 states that psychological laws exist and are intentional.  

Thesis 2 requires a propositional attitude to include a mental representation of a proposition, P,  that is the 

content of the attitude. Propositions themselves express relations between concepts. The proposition that dogs 

bite includes the concepts dog and bite and a relation between them. Mental states thus consist of intentional 

relations to relations among the mental representations of concepts.  

Thesis 3 states that thinking is “computation.” In more detailed terms, thinking is the iteration of “causal 

relations among symbols that respect semantic properties of the relata (Fodor, 1998, p. 10).” Causal relations 

                                                 
1
 I will not discuss “neuropsychology” data – the role of disorders in individuals with known neurological disease to develop models of 

psychological phenomena and their neural correlates (See Shallice, 1988; Shallice and Cooper, 2011, for extensive presentations). 

Behaviors of individuals with known neurological disease are themselves psychological data, described and explained (to the extent 

that they are) in models whose terminology is drawn from psychology (including computational models). In this respect, they can 

reasonably be considered part of the data that the special science of psychology recognizes as its subject matter (although one might 

argue that they should be excluded, or treated as boundary cases of limited importance, because they arise in non-normal brains; this is 

a complex issue). The characterization of the neural state of these individuals (e.g., features of their lesions) is part of the data that 

contribute to our understanding of the neural correlates of these behaviors.  

 



 

 3 

among symbols that respect their semantic properties occur because, at its basis, the mind/brain operates as a 

Turing machine, in which the next operation of a machine is based on the state the machine is currently in and 

the symbol it is reading. The computations of RTM are purely formal, determined by the representations that 

constitute their input, not the content of those representations. This concept of computation is broad. Though it 

limits computations to causal relations that respect semantic properties, it does not limit them to causal relations 

that are truth preserving. Thus association is a computation.  

A simple example of the way the process works is Jones walking down the street and seeing a man with a 

dog. Jones knows that dogs bite (i.e., holds a propositional attitude) and crosses the street to avoid them (bases 

action on an entailment of the propositional attitude he holds). Jones may also think of dog food (i.e, have an 

association) and remember he has to buy dinner (i.e, have an further association that might lead to action). I see 

these two types of operations – entailment and association – as playing two different roles in human psychology. 

Entailment and inference are the basis for rational thought, justifiable belief (including science) and many 

successful actions (including applications of science). Association contributes to creativity.  

The example above is extremely simple. Much more elaborate chains of mental states underlie more 

complex decision making and action. In many cases, thought involves considering multiple possibilities (i.e., 

holding multiple propositional attitudes) and computing their entailments; and social interactions involve 

attributing similar complex chains of thought to others. 

The RTM framework requires characterization of the concepts that are related in the propositions that are 

the contents of propositional attitudes and of the rules that relate these concepts to form these propositions 

(among other requirements). I will discuss these topics in turn. 

Concepts 

The concept of a concept is, to say the least, illusive (see, for instance  ( (1975, chapters 8 and 12) and 

Margolis and Laurence (1999, Chapter 1) for summaries and critiques of many commonly held views about what 

they might be). As a point of departure, I will defer to my thesis advisor, Jerry Fodor. Fodor (2000) advances 

three premises/assertions about concepts.  

1. Concepts apply to things in the world. The concept dog is one which, of necessity, all and only 

dogs fall under.  

2. Concepts are word meanings. The concept dog is what the word ‘dog’ and its synonyms and 

translations express.  

3. Concepts are constituents of thoughts. To think that dogs bark is inter alia to entertain the 

concept dog and the concept bark.  

Premise/assertion 1 deals with the content of a concept. Though, as noted above, RTM holds that the content 

of an expression does not determine its role in mental operations, the content of an expression does determine the 

truth of a proposition that contains the concept, which is of course critical to the utility of propositions. 

Premise/assertion 1 claims that a concept necessarily applies to all and only the items that fall within its 

extension. What does this imply about the representation of concepts?  

The classic, Aristotelian, answer is that the representation of a concept is the set of properties that are 

individually necessary and jointly sufficient to characterize items in its extension. In this model, concepts are 

related to features by the relations of dominance and sisterhood. Thus, the concept MODE OF TRANSPORT 

dominates VEHICLE, BOAT, PLANE, etc.; VEHICLE dominates CAR, TRUCK, SUV, etc. At the bottom of 

the hierarchy are primitive features. Concepts inherit features from the nodes that dominate them and transmit 

them to the nodes below.
2
 Despite many positive features,

3
 and its venerable history, the Aristotelean view of the 

                                                 
2
 This view is closely related to the view that words have definitions.  
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content of concepts has been firmly rejected by cognitive psychology and cognitive neuroscience.
4
 A number of 

models of content have arisen in place of the Aristotelean view of the content of concepts. They fall into two 

broad categories - inferential role semantics models and information models. Theory theories exemplify the first 

type; prototypes exemplify the second. Prototype models are important to the discussion here because they are 

universally accepted by “associative-probabilistic” models; I shall discuss them below.  

Premise/assertion 2 states that the concept dog is what the word ‘dog’ and its synonyms and translations 

express. This relates concepts to language (words). It points to the important fact that there is more to a concept 

than its content, understood as the items in the world that it designates. This is a familiar conclusion, associated 

with Frege’s (1892) distinction between reference and sense. As Frege pointed out, “the evening star” and “the 

morning star” refer to the same object but are not the same concept. The reason is related to the existence of 

intentional contexts (a critical feature of RTM). Different terms cannot substitute freely in intentional contexts 

and preserve truth. It is possible for John to believe that the evening star is the evening star and not believe that 

the evening star is the morning star. Therefore different co-extensive terms must be different concepts.  

Frege proposed that words had both sense and reference. He suggested that the sense of an expression is the 

way by which one conceives of the denotation of the term. He proposed that when a term (a name or a 

description) follows a propositional attitude verb, it denotes its sense, not its referent. In Frege’s system, while 

“John believed that the evening star is the evening star” and “John believed that the evening star is the morning 

star” have the same truth value (if the morning star and the evening star are coreferential), they are different 

propositions and ascribe different thoughts to John, because the senses of “the evening star” and “the morning 

star” differ. 

As Fodor points out, however, sense is not quite fine grained enough to deal with all intentional contexts. In 

Frege’s view, terms with the same sense are synonymous. However, synonyms cannot substitute salve veritate in 

so-called Mates contexts. “Pupil” and “student” are (arguably) synonyms, but it is possible for Bill to wonder 

whether John understands that pupils are students even though Bill does not wonder whether John understands 

that pupils are pupils. Fodor (1998) argues that what is added to a concept aside from its reference is its “mode 

of presentation (MOP).” There seem to be as many MOPs as there are words and phrases. Fodor (1998, p. 17) 

says “If it is stipulated that MOPs are whatever substitution salve veritate turns on, then MOPs have to be sliced 

a good deal thinner than [Fregean] senses. Individuating MOPs is more like individuating forms of words than it 

is like individuating meanings.”  

MOPs have roles in the operations of RTM discussed above. The same MOP can play the same mental role 

in two people even if the concepts it refers to are non-coextensive (the most notorious example is imaginary: 

“water” on Hillary Putnam’s Twin Earth and water on Earth). The role of a MOP rather than a referent in mental 

processes can be illustrated by considering a person who thinks “Jill’s new boyfriend” is Bill and one who thinks 

                                                                                                                                                             
3
 One strength of this view is that simple concepts and complex concepts have the same structure – the former are constituted 

by sets of features, the latter by sets of primitive concepts. Because a concept entails and is entailed by its constituents, the 

necessity of the application of a concept to items that fall under its extension (premise/assertion 1) is guaranteed. A corollary 

is that this model accounts for analyticity; it is because “bachelor” entails and is entailed by “unmarried man” that “bachelors 

are unmarried men” is analytic. 

 
4
 A widely cited problem, attributed to Wittgenstein (1953), is that no examples of severally necessary and jointly sufficient features 

have ever been provided. A second is that there is no principled distinction between features and concepts (correspondingly for 

definitions, between defieniens and definiendum); the features that are postulated often appear to be at least as complex as the concepts 

whose constituents they are said to be (e.g., Jackendoff (1972) defines “keep” as “cause a state to endure”). A third, related to the 

second, is that there does not seem to be a way to identify the set of primitive concepts or features.  A fourth is that the hypothesized 

definitional features of a concept never seem to be activated in psychological processes. A fifth is that the semantic phenomena that 

the Aristotelian account explains probably don’t exist. The analytic/synthetic distinction (see note 3), for instance, is widely regarded 

as having been seriously discredited, if not destroyed, by Quine (1951). 
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it is Henry. They can discuss many topics about Jill and her boyfriend without realizing they are not referring to 

the same person – the phrase “Jill’s new boyfriend” is mentally active, not its referent.  

To summarize, Premises 1 and 2 lead to the view that “a concept is a MOP together with a content (Fodor, 

1998, p. 17, fn 16).” The content of a concept is a nomic relation between the concept and some set of items or 

events in the world (the notion of item or event is broad; honesty is a concept). MOPs are mental objects that 

have semantic content and that play causal roles in the rules that combine representations in the propositions in 

propositional attitudes. MOPs capture both what Frege’s theory of sense and Turing’s notion of computation 

require, a fact that Fodor (1998) says is one of the most important convergences in psychology. Basic concepts, 

and unanalyzable MOPs, are not constellations of individually necessary and jointly sufficient features. I will 

argue below that they are also not constellations of probabilistically associated features. Fodor (1998, and 

elsewhere) says that the content of a concept is whatever the mind “locks” or “resonates” to when presented with 

prototypical instances of the concept -- the content of the concept DOG is “dogginess.” Underspecified as this 

view is, and unhelpful as it seems to most people I know, I shall leave this section with this idea, a key feature of 

which is that basic concepts are unitary.  

Computation 

Fodor’s (2000) assertion/premise 3 is that “concepts are constituents of thoughts. To think that dogs bark is 

inter alia to entertain the concept dog and the concept bark.” To think that dogs bark also requires that one be 

able to combine the concepts dog and bark to form the proposition (dogs bark). This is one aspect of 

computation. 

Computations have three properties that Fodor describes as compositionality, systematicity and productivity. 

These features can be illustrated with an example. If you understand the words “the,” “boy,” “girl” and “push” 

and you are capable of having the thought “The boy pushed the girl,” you must be capable of having the thought 

“The girl pushed the boy.” Note that this capacity does not depend on preservation of truth; asymmetry of action 

is commonplace. Nor does it depend upon epistemic factors; even if it is true that “The girl pushed the boy,” you 

may never have evidence that this is the case. It is a property of the human mind that, if it is possible for a person 

to represent “The boy pushed the girl,” it is possible for him/her to represent “The girl pushed the boy.”  

Compositionality, systematicity and productivity immediately follow from the view that a person who has 

the thought “The boy pushed the girl” has a rule that represents a relation between representations of  “the,” 

“boy,” “girl” and “push,” which allows “the,” “boy,” “girl” and “push” to combine in the way that expresses the 

propositions “The boy pushed the girl” and “The girl pushed the boy.” Because systematicity and productivity 

are general properties – the relation between the ability to have the thoughts “The boy pushed the girl” and “The 

girl pushed the boy” applies to an infinite number of concepts that can substitute for “the,” “boy,” “girl” and 

“push” -- the rule establishes a relation not between representations of specific concepts but between higher level 

characterizations of concepts. The higher level characterizations of concepts that figure in the rules are not 

simply superordinate levels of a concept hierarchy; a single rule applies to items in many semantic domains. The 

rules could take many forms. They might be formulae in predicate calculus; i.e., a rule might state that objects 

are variables (x,y) in expressions of the form f (x,y), where f is an action.  

Linguistics provides candidates for the necessary higher level characterizations of concepts in the form of 

syntactic categories, which are independent of semantic class to the needed extent, and for the rules that relate 

concepts, in the form of the syntactic structure of a language. The linguistic approach to compositionality, 

systematicity and productivity is to postulate lexical items that are assigned syntactic categories, informally 

known as “parts of speech” – noun, verb, determiner, etc. (for issues with this claim, see Croft, 1990) -- and 

syntactic structure in which the terminal symbols dominate lexical entries and in which dominance and 

sisterhood relations defined over nodes in these trees  determine semantic relations among the lexical items. The 

system is highly specific -- similar relations among nodes differ in whether they allow semantic relations to be 

established between the lexical items they dominate (Figs 1, 2). 
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Figure 1: Interpreted path over phrase marker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Uninterpreted path over phrase marker. 

 

Syntactic structures interface with expression and perception. They therefore map meanings onto sequences 

of words. The mapping is many-to-many.  The same meaning can be mapped onto different word sequences 

(e.g., thematic roles in actives and passives); a given sequence of words can be ambiguous; and word sequences 

The boy         who   chased the girl hugged      her  

NP 

NP 

VP     S 

S  

NP VP 

V NP 

NP  V 

The boy         who   chased the girl hugged the woman  
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(and other surface forms) encode several aspects of meaning (e.g., a sentence-initial NP can be the subject of a 

sentence, the agent of a verb phrase, and the focus of a discourse). One way to characterize the surface form of 

syntax and morphophonology is as a compression of multiple aspects of meaning into a linear signal. A major 

issue in theoretical linguistics is how syntactic representations capture this compression. All options involve an 

extremely complex set of rules that relate concepts in propositions to surface forms of phrases and sentences.  

Syntactic structures (and morphology) provide rules that can account for some of the combinatorial 

properties of concepts. The question of whether these representations support thought has largely been answered 

negatively (e.g., Fodor, 2008; Pinker, 1994). The most important objection seems to be that mental content is 

ultimately unambiguous (the meanings of ambiguous sentences must themselves be unambiguous). Therefore, it 

is argued, we must think in a “language of thought (LOT),” not a natural language. However, the unambiguous 

nature of mental representations is only incompatible with an un-annotated surface structure of a natural 

language being the entirety of the representation of a sentence. A conceptual (semantic) level of language – 

Logical Form (LF) – would be a possible LOT. A sufficiently annotated surface structure can also be 

unambiguous and could be the form of thought. A viable position, I believe, is that syntactic (including 

morphological) operations underlie the combination of word meanings at the propositional level.  

Although it is possible that some of the properties of LOT are due to direct utilization of features of natural 

languages, others clearly cannot be. For instance, associations based on words and inferences based on 

propositional meaning are not derived by combination of concepts based on syntactic rules. Because of this, 

many aspects of meaning are not created by the application of rules of language to lexical items. As I mentioned 

above, an important set of these preserve truth. These include rules of valid inference. I would like to emphasize 

that such rules have the properties of compositionality, systematicity and productivity that characterize the rules 

that combine concepts to form propositions. Syllogisms relate their elements systematically and productively, 

and any human who can draw a valid conclusion from the syllogism 

 All plumbers are electricians 

 All electricians are carpenters 

can draw one from the syllogism 

 All electricians are plumbers 

 All plumbers are carpenters
5
 

To summarize, RTM holds that psychological laws are intentional and that mental states consist of 

propositional attitudes in which the propositions relate concepts.  Concepts connect nomically to items in the 

world, though how they do so remains mysterious. The content of a concept is not the aspect of a concept that 

plays a role in mental computational processes. What plays such a role is how a person “grasps” the concept. 

There seem to be at least as many ways of grasping concepts as there are lexical items and their combinations – 

the MOPs of concepts. Words are the best available candidates for the elementary MOPs that play such causal 

roles. The syntactic operations of language allow the combination of concepts into phrases and into the 

propositions in propositional attitudes. These operations, like those of valid logic and mathematics, consist of 

rules that operate on symbols.  

                                                 
5
 Because of this, syllogisms also can express counterfactuals, and cannot be learned by inductive generalization in which the truth of a 

conclusion is associated with the truth of the premises. Consider: 

 Some plumbers are electricians 

 Some electricians are carpenters 

The fact that the inference that some plumbers are carpenters is not valid can be endorsed by person who has only encountered 

plumbers who are carpenters. 
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Probabilistic, associative models 

There are many contentious aspects of the picture I have presented. One area of contention deals with 

“internal” issues. Debates of this type accept the idea that mental operations include symbolic representations of 

concepts and combinatorial rules but dispute aspects of particular models. For instance, many models of 

syntactic structure are based on philosophical and linguistic considerations and make little contact with 

experimental studies of perceptual identification, comprehension and production of words and sentences. 

Alternative models of syntactic structure have arisen within these disciplines -- e.g., Lewis and Vasishth’s (2005) 

implemented parser use of modified X’ categories -- that do not appear in theoretical linguistics, as far as I know. 

The second set of objections is much more fundamental. It rejects the notions of unitary symbols and 

combinatorial rules; it sees mental activities as probabilistic at their core. Spivey’s (2007) description of 

“representation” makes some of the differences in the approaches clear: 

[the] term representation . . . need not refer to an internal mental entity that symbolizes some 

external object or event. . . The word can. . .  refer to a kind of mediating stand-in  . . . between 

sensory stimulation and physical action, which is implemented largely by neuronal assemblies . . . 

[that] never settle into truly stable states . . . the bottleneck that converts fuzzy, grey, probabilistic 

mental activity into discrete easily labeled units is not the transition from perception to cognition 

– contra cognitive psychology. Rather that conversion does not take place until the transition 

from motor planning to motor execution (p 3 – 6)” 

There are many models fall into the “probabilistic, associative” category. The best known and most 

widely used in cognitive psychology are connectionist (PDP) models and dynamic state and phase 

models. Developers of probabilistic models have claimed that these models are superior to symbol-based 

procedural models in describing and explaining a wide range of psychological phenomena.  

I find it instructive to consider the areas in which success has been claimed. A complete review of 

work using these approaches was beyond me; I compiled a list of representative areas of study from 

three relatively recent sources: Spivey’s (2007) book on dynamic models; Joanisse and McClelland’s 

(2015) review of studies of language; Rogers and McCelland’s (2014) review introduction to a special 

issue of Cognitive Science. By my count, Spivey reviews 9 simulations, Joanisse and McClelland 7, and 

Rogers and McClelland 25. Almost all of the work reviewed deals with single items. A small portion (5 

studies) deals with structural relations over time; a portion of this latter work is presented as showing the 

capacity of probabilistic/associative models to extract “syntactic-like” relations among words in 

sentences.  

The work dealing with single items has been directed towards two related phenomena: extracting patterns in 

what are called “quasi-regular” domains, such as spelling-sound correspondences and past tense formation in 

English, and modeling interactions between factors that determine categorization, interpretation, aspects of 

memory, naming and other behaviors. These models have greatly expanded our understanding of possible ways 

that structure may be extracted from stimuli in a domain and that factors might interact. They effectively model 

“graceful degradation” of performances in these domains following brain damage. They have done much to 

dispel the encapsulation view of processing associated with Fodor’s theory of modularity. That said, many of the 

best developed models of processing single items are highly controversial (see Shallice and Cooper, 2011, for a 

review of issues that have arisen in models of word reading, an area in which PDP models have been quite 

successful).  

There is much less work dealing with extracting structure from sequences of items, and very little pertaining 

to extracting structure in domains that, from the viewpoint of symbolic models, involve operations that combine 

categories in the way that the computations reviewed above do. I will review work dealing with the aspects of 

combinational computation discussed above. 
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As discussed above, RTM maintains that one set of mental states consists of maintaining a propositional 

attitude – an intentional relation to a relation of concepts that forms a proposition. This requires a theory of 

concepts and their combination into propositions. Beginning with the former, to my knowledge, though details 

vary from model to model, all probabilistic/associative models of concepts adopt the view that concepts are 

prototypes.  

Prototype theories share features with the Aristotelian view. In both, concepts are related by the relations of 

dominance and sisterhood and concepts inherit features from the nodes that dominate them and transmit them to 

the nodes below. The difference between Aristotelian and prototype models is that, in the Aristotelian model, the 

relation between nodes is one of necessity and, in prototype theory, it is probabilistic. Properties are assigned to 

items probabilistically in two ways. First, whereas an Aristotelian view of the concept DOG might maintain that 

dogs necessarily have tails, bark and are man’s best friend, a prototype model might maintain that they are likely 

to have these properties but need not have any of them. Second, properties may be graded -- it is possible to rate 

man’s affection for an animal. Items that have higher values of properties associated with a concept and those 

that have more of these properties are more likely to be instances of the concept than items that do not. The 

prototypical item at each level of the hierarchy is the item that shares the most features with other items at that 

level. 

Unlike definitions, the effects of prototypicality are manifest in virtually every psychological domain. People 

produce words corresponding to prototypical concepts faster than to non-prototypes. Children learn names for 

prototypical members of a category before non-prototypical items. Aphasic patients generalize semantic feature 

training for naming from non-prototypical to prototypical members of a category more than vice versa (a 

superficially paradoxical result that some computational models of recovery simulate).  

Despite these successes, prototypes cannot be the content of concepts for many reasons. To begin with, they 

confront the same problems in specifying features that Aristotelian models face. In addition, they encounter 

problems specific to themselves.
6
  

One is that notion of similarity upon which prototypes build presupposes the notion of identity. In order  to 

grade how similar two items are with respect a feature, we must know what the feature consists of. A second is 

that prototype theory cannot account for “Boolean concepts,” such as “not a cat”. As Fodor (1998) points out, a 

bagel is not a cat, but items that are more like bagels are not better instances of the concept “not a cat.” A third 

problem for prototypes is that they are found in domains where definitions do exist. 3 is the prototypical odd 

number and the prototypical prime number. Maintaining that prototypes are the content of concepts in these 

domains is clearly wrong and leads to the inverse of the Boolean concepts problem: 5 is not a better odd number 

or prime number than 29 for being more like 3 than 29. Most important, prototypes do not combine to form 

complex concepts. The prototypical fish for most Americans is a medium sized fish -- perhaps a trout, perch, 

salmon, etc.; the prototypical pet is a dog or a cat; but the prototypical pet fish is a goldfish or another small fish 

that survives in a glass bowl, not the combination of a trout and a dog.  

To my knowledge, no probabilistic models of complex concept formation solve this last problem. Zadeh’s 

(1997) fuzzy logic does not (see discussion of earlier work by Zadeh (1965) in Osherson and Smith (1981)). 

Smolensky (1990) developed a tensor product model of complex concept formation in which vectors 

representing elementary concepts combined to form new vectors representing complex concepts. The model was 

productive and systematic in the sense that it allowed any number of vectors to be combined. However, it was 

not compositional. The contributing vectors could not be extracted from the resulting vector; the vector 

representing the complex concept was, in essence, a unitary item.  

                                                 
6
 Jean-Michel Fortis pointed out to me that Rosch herself (e.g., Rosch, 1978) treated prototypes as fictions, claiming only that 

there are judgments of typicality.  
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With respect to extracting structure from sequences of items, specifically the combinatorial operations that 

determine propositional meaning, the reviews I cited above showcase work by Elman and Socher. Elman (1991) 

used recurrent nets to extract syntactic structure. However, Elman’s model dealt with a very limited range of 

structures. Christiansen and McDonald (2002), which is rarely cited, reported training of a simple recurrent 

network to predict the next word in sentences. The model had a number of successful predictions (e.g., more 

errors predicting verbs of object relative sentences than other words) but it made many false and ungrammatical 

predictions. The most recent work on the topic, cited by Joanisse and McClelland, is by Socher and colleagues, 

who developed a parsing model using multiple hidden layers that mediate the input from the output (so-called 

“deep learning”). Socher et al (2013) used this recursive neural network to model the Stanford Sentiment 

Treebank. The model is important because it not only assigns structure but also interprets phrases, as positive or 

negative in emotional valence. The model is successful at assigning words the proper valence, but creates 

incorrect syntactic structure, illustrated in the following figures.  

 

 

 

 

 

 

Figure 3: Incorrect parse (1) in Socher et al. (2013). 
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Figure 4: Incorrect parse (2) in Socher et al. (2013). 

 

It is, of course, premature and dangerous to predict the limits of a vigorous line of research, but, at present, it 

seems to me that probabilistic/associative models have failed to relate concepts based on their forms in 

psychologically realistic ways. One possible direction of research using these models that may fill this gap are 

dynamic models (Spivey, 2007). These models describe sequences of activation of categories (actually, 

approximations to categories – see quote from Spivey above) as transitions between attractors in phase or state 

space. Shallice and Cooper (2011) suggest that this is the basis for combinatorial operations over categories. 

Whether these models will succeed where existing ones have not remains to be seen.  

Dynamic models also provide a means for a potentially interesting combination of aspects of 

symbolic/procedural models and probabilistic/associative models. They allow for apriori values of transitions 

between attractors in phase and state space (Smolensky and Goldrick, 2014). These apriori values might be a 

basis for rules such as those that create syntactic structure, underlie valid inference, and others. Note, however, 

that, if this were to be developed, the success of these models in describing and explaining combinatorial 

operations over categories would not be entirely due to the probabilistic/associative nature of the computations in 

individual nets but also to pre-specified, non- probabilistic/associative constraints on relations among attractors. 

These constraints would correspond to the rules of symbol-based procedural models.  

A final consideration regarding the rules that govern relations among categories and categories themselves 

is that many are not features of the world but products of the human mind. Imaginary numbers do not exist 

outside the human mind; the same seems to me to be true for syllogisms, syntactic relations among grammatical 

categories and categories other than natural kinds. If our science is right, gold and tigers exist in the real world, 

and the concepts “gold” and “tiger” could be learned by observation of items in the non-human world (in fact, 

the concepts “gold” and “tiger” depend upon scientific observations), but shrubs are not a biological entity – 

shrub is a category whose origin is totally human. The fact that the origin of many combinatorial relations among 

categories and of many categories themselves is the human mind entails that what a human has to learn is how 

other humans categorize the world and relate the categories they assign. The available database that 

probabilistic/associative models consult to extract these aspects of cognition is the overt behavior of humans. 

This is an extremely limited source of information compared to the information available to humans (people 
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learn about imaginary numbers, or the multiplication table, or syllogistic logic by exposition from teachers, not 

observation of behavior) but, even in domains where it could conceivably be sufficient (e.g., acquiring word 

meaning), the question of how the mind created these relations among categories and the categories themselves 

needs to be explained. As best I can see, this leads back to apriori, innately human, constraints on these aspects 

of cognition, not obviously phraseable in probabilistic/associative terms. 

To summarize, looking at probabilistic/associative models from the perspective of the view of thinking and 

cognition broadly set out by RTM, these models have had considerable success in modeling categorization, 

interpretation, naming and other behaviors affecting the processing of individual items, though, even there, their 

success is qualified by problems associated with basic features of their models, such as the adoption of prototype 

theories of concepts. These models have fared poorly in describing, and therefore have necessarily failed to 

explain, phenomena related to combinatorial operations over categories. As best I can see, this failure is due to 

intrinsic features of these models, which are not capable of extracting “rules” that determine relations among 

categories that appear very infrequently in the dataset.  

Neurological Considerations  

My reading of the literature and discussions with researchers leads me to believe that neural considerations – 

the belief that probabilistic/associative models are neurologically realistic and symbol-based procedural models 

are not -- are a large part of the motivation to model combinatorial operations probabilistically. As I said at the 

beginning of this talk, it is often implied, and sometimes stated, that symbol-based procedural models of the sort 

I have outlined above in connection with RTM are not neurally realistic and therefore not to be taken seriously. 

In not a few papers, researchers appeal to the neurological realism of probabilistic models in adjudicating 

between theories of different types. Thus, for instance, Seidenberg and Plaut (2006) acknowledged that models 

that postulate word nodes often provide better accounts of empirical findings in word naming than models that 

have distributed representations but endorsed a model of the latter type because it was considered more 

neurologically plausible. In this part of this talk, I will consider neurological issues. 

Rogers and McClelland (2014) list seven “central tenets” of connectionist models, four of which are 

widely thought to be related to – even derived from -- neurological elements and events: 

1. Cognitive processes arise from the real-time propagation of activation via weighted connections 

2. Active representations are patterns of activation distributed over ensembles of units 

3. Knowledge is encoded in connection weights 

4. Learning and long-term memory depend on changes to connection weights 

In connectionist models, these four properties are instantiated by units at one level being connected 

to multiple units at other levels and activation of a unit changing the strength of the connection between 

it and those it connects to (1). Information (knowledge) is distributed in the sense that it resides in 

multiple connection weights (3). The pattern of activity over multiple units at one (or sometimes more) 

level(s) corresponds to a piece of information (2); the activity of individual units is not sufficient to 

individuate a piece of information. Learning is achieved by changes in connection weights through 

feedback from the difference between activation patterns in an output layer and the expected pattern (4), 

where expectations can be provided externally or internally by predictions about upcoming events.  

There have been many discussions about the neurological reality of models with these properties. I 

will focus on the neurological elements that correspond to the units themselves. For these models to be 

neurally realistic, assuming the properties of the units are those listed in Rogers and McClelland (2014), 

there must be elements in the nervous system that have the set of properties specified in 1 - 4. Elements 

that have only one or two of these properties are not suited to fulfill the computational functions found 

in the models Rogers and McClelland (2014) refer to.  
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The obvious hypothesis is that the relevant neural elements are individual neurons, and depictions 

of units in these models often reinforce this view (Figure 5). Many individual neurons have efferent and 

afferent connections (synapses) onto and from many other neurons (consistent with 1, 2). Axonal 

activity releases neurotransmitters that alter post-synaptic membrane voltage (consistent with 2) and 

induce changes in post-synaptic neurons that alter its responses to further stimulation (consistent with 3, 

4). Firing rates of neurons are related to discernable properties of input at a variety of levels of 

abstraction (from oriented lines through individual faces and people) and to responses (2). Nonetheless, 

the units in probabilistic/associative models are not likely to correspond to individual neurons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Depiction of unit in a PDP model in Rogers and McClelland (2014). 

One problem that has been frequently cited in equating units in probabilistic/associative models 

with individual neurons pertains to the changes in connection weights that constitute learning (4). In 

many probabilistic/associative systems (e.g., Plaut et al, 1996, highlighted in Rogers and McClelland, 

2014), the magnitude of the error between the output of the system and an expectation feeds back to a 

hidden unit layer and alters connection weights. To my knowledge, single cells that are sensitive to 

difference functions (e.g., dopaminergic cells in VTA; Cohen et al, 2012) do not have unisynaptic 

reciprocal connections to their afferents. Feedback based on error detection is determined by a complex 

set of responses of different cells. The implication is that the units in probabilistic/associative models 

that contribute to property 4 – at least to the extent that changes in connection weights that constitute 

learning depend on feedback -- must consist of sets of cells, not individual neurons. 

A second problem with neurons being the units in probabilistic/associative models pertains to the 

nature of connection weights. Corresponding to the view that probabilistic/associative  units are neurons, 

connection weights between units are often thought of as synapses. An example comes from Shallice 

and Cooper (2011, p, 214), who seamlessly move between mathematical and neural levels in describing 

a connectionist model of semantic processing that “involves neurophysiological assumptions about the 

operations of synapses within the context of an otherwise standard feedforward connectionist model.” 

Equating connection weights with synapses is an enormous unsustainable oversimplification. There are 
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multiple types of synapses in virtually all CNS cells, with different structures responsible for different 

post-synaptic activity. Post-synaptic cells change in multiple ways in response to stimulation, ranging 

from simple increases or decreases in local membrane potential through post-stimulation tetanic 

responses and development of new receptors as a result of genetic expression (Kandell, 2009). See 

Figure 6. One feature of this complex system is that long-term changes in the responsiveness of post-

synaptic neurons are due to many mechanisms – gene expression, new dendritic spine formation, etc. 

Because long-term changes in the responsiveness of post-synaptic neurons involve post-synaptic 

machinery, synapses do not have property 4 of connection weights – the changes in connection weights 

that underlie learning and long-term memory involve much more than synapses.  

 

 

 

Figure 6: Cartoon of some cellular and molecular events underlying plasticity (Kotaleski and 

Blackwell, 2010). 
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contributions to, this field. Finally, we review some key 

computational models of the molecular mechanisms 

underlying synaptic plasticity that represent the diver-

sity of simulation approaches, brain regions, molecular 

pathways and emergent information processing proper-

ties. Importantly, the models we describe were selected 

to highlight the discoveries that resulted from simula-

tions, some of which have subsequently been confirmed 

in empirical experiments.

Molecular mechanisms of synaptic plasticity

The specific types of neuronal and synaptic activity that 

are required for the induction of long-term potentia-

tion (LTP) and long-term depression (LTD) are diverse 

and depend on the brain region and cell type. Excellent 

reviews of these different forms of synaptic plasticity 

have been published elsewhere4,5. In general, the two 

main features of most induction protocols at excita-

tory, glutamatergic synapses are the presynaptic release 

of glutamate and postsynaptic depolarization4, which 

together lead to an increase in the intracellular Ca2+ 

concentration in the postsynaptic cell through several 

mechanisms (FIG. 1a).

The increase in postsynaptic Ca2+ concentration, 

which is crucial for the induction of both LTP and 

LTD6,7, leads to activation of many molecule species 

that are implicated in synaptic plasticity (FIG. 1b). In some 

systems, the magnitude of the Ca2+ elevation predicts 

whether an induction paradigm will produce potentia-

tion or depression, with a large Ca2+ increase producing 

potentiation and a small increase producing depres-

sion8,9. Nonetheless, the Ca2+ concentration by itself is 

not always sufficient to predict the direction of plastic-

ity10,11. In some cell types, the source of the Ca2+ influx 

influences whether LTD or LTP develops; for example, 

LTD requires activation of either metabotropic glutamate 

receptors (mGluRs) or L-type Ca2+ channels, whereas 

LTP is usually NMDA (N-methyl-d-aspartate) receptor 

dependent5,12. Furthermore, the nonlinear interactions 

between different sources of Ca2+ and its multiple target 

molecules make it difficult to predict the consequences 

of neural activity.

Several protein kinases and phosphatases, activated 

through transmembrane receptors, are implicated in 

either the induction or the maintenance of synaptic 

plasticity (FIG. 1b). Induction includes events during 

the stimulation protocol that lead to plasticity, whereas 

maintenance involves events that occur after plasticity 

has been induced. Maintenance events can be blocked by 

the application of drugs tens of minutes after induction. 

Ca2+–calmodulin-dependent protein kinase 2 (CAMK2) 

— activated by Ca2+-bound calmodulin — is required 

for hippocampal and neocortical LTP. Protein kinase A  

(PKA) is required for the induction of LTP in the stria-

tum, and for the induction of a long-lasting form of 

NMDA-dependent LTP in the hippocampus (known as 

late-phase LTP)13. Protein kinase C (PKC) is required for 

the induction of LTD in the cerebellum and of mGluR-

dependent LTP in the hippocampus5. In addition, atypi-

cal forms of PKC, such as protein kinase Mζ (PKMζ), 

although not required for induction, have a role in the 

Figure 1 | Signalling pathways underlying synaptic plasticity. a | Presynaptic 

glutamate release and depolarization of the postsynaptic neuron leads to Ca2+ elevation 

in the postsynaptic cell. Glutamate is required for activation of NMDARs (N-methyl- -

aspartate receptors) and metabotropic glutamate receptors (mGluRs), and depolarization 

is required for activation of NMDARs106 and voltage-dependent Ca2+ channels (VDCCs)107. 

The particular mechanism employed depends on the cell type. b | Signalling pathways 

leading to kinase activation and AMPAR (α-amino-3-hydroxyl-5-methyl-4-isoxazole-

propionate receptor) phosphorylation. Only a subset of the known pathways is shown 

here, and not all of the pathways shown in this figure are involved in all neurons.  

Ca2+ activates Ca2+–calmodulin-dependent protein kinase 2 (CAMK2), which 

phosphorylates the AMPAR GluR1 subunit, leading to increased numbers of functional 

AMPARs. CAMK2 can be persistently activated by autophosphorylation108,109, which 

occurs when two adjacent subunits are bound to Ca2+–calmodulin. This persistently active 

form of CAMK2 is most strongly implicated in hippocampal long-term potentiation (LTP). 

Dopamine D1 receptors (D1Rs), β-adrenergic receptors (βRs)110,111 and the adenosine type 

2A receptor (A2AR), coupled to the stimulatory G protein (G
S
)
 
or olfactory G protein (G

olf
), 

contribute to LTP by activating adenylyl cyclase, whereas other dopamine D2 receptors 

(D2Rs) and muscarinic acetylcholine receptors (M2R and M4R) inhibit adenylyl cyclase. 

The cyclic AMP produced by adenylyl cyclase activates protein kinase A (PKA), which 

subsequently phosphorylates AMPAR GluR1 subunits and either protein phosphatase 1 

regulatory subunit 1B (PPP1R1B; also known as DARPP32) or inhibitor-1 (REFS 112,113). 

These decrease phosphatase activity, allowing the persistence or enhancement of both 

AMPAR phosphorylation and insertion of AMPAR in the membrane. Some types of 

muscarinic acetylcholine receptors (M1Rs) and mGluRs are coupled to phospholipase C 

(PLC), which produces diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (Ins(1,4,5)P
3
). 

Typical forms of PKC are activated by binding to both Ca2+ and DAG. MAPK2–3 

(mitogen-activated protein kinase 2–3; also known as ERK1–ERK2) is activated through a 

pathway involving receptor tyrosine kinases (RTKs) via the RAS–RAF–MEK (MAPK–ERK 

kinase) pathway, and is necessary for the gene transcription and protein translation that 

underlies persistent forms of synaptic plasticity. In addition, MAPK2–3 can be indirectly 

activated by PKC, RAP guanine nucleotide exchange factor 3 (RAPGEF3; also known as 

EPAC), Ca2+ and PKA. c | For late-phase LTP and memory storage, a combination of 

synaptic inputs and neuronal activity leads to AMPAR phosphorylation and membrane 

insertion, gene transcription and protein translation. Gα
i
, α-subunit of the inhibitory G 

protein; PDE, phosphodiesterase; PP, protein phosphatase .
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There is another problem in equating connection weights with synapses. Connection strength and 

unit activity are linked in models in ways that do not appear to correspond to properties of synapses. 

Property 3 –  “knowledge is encoded in connection weights” --  is related to property 2 –“active 

representations are patterns of activation distributed over ensembles of units” -- through property 4 -- 

learning and long-term memory depend on changes to connection weights. As connection weights 

change in association with input to a unit, the new connection weight contributes to the representation of 

knowledge and to activation of that unit by successive input changes. However, these two effects of 

input are decoupled at synapses. Input to ionotropic receptors leads to fast depolarization or 

hyperpolarization of the post-synaptic neural membrane, which affects the development of an action 

potential (the neural activity that corresponds to an “active representation” (property 2)). However, these 

events do not lead to changes in the responsiveness of the post-synaptic receptor (property 4); i.e., they 

do not change the post-synaptic receptor in a way that corresponds to the change in connection weight 

that results from input to a unit in a probabilistic/associative  model. The post-synaptic changes that are 

responsible for long-term changes in the responsiveness of post-synaptic neurons involve other cellular 

elements, partially listed above.  

In addition to being structurally decoupled, properties 2 and 4 occur on different time scales at 

synapses than the corresponding events in probabilistic/associative models. In models, an input to a unit 

leads both to that unit becoming active and to a change in its connection weight; however, in neural 

tissue, membrane potential changes occur on a much faster time scale than the changes that affect a 

neuron’s responsiveness. Postulating “fast” and “slow” connection weights does not solve this problem, 

as far as I can see, because fast weights both affect immediate activity of the downstream unit and create 

long term connection weight changes that carry representations.  It is not clear that the ensemble of 

activity in all these cellular elements have properties 2 – 4.  

Because of problems like these, advocates of probabilistic/associative  models generally do not claim 

that units are individual neurons. Plaut and McClelland (2010a) say “The computational principles that 

underlie the probabilistic/associative  approach are intended to capture how brain areas learn to represent 

and process information as patterns of activity over large groups of neurons rather than the detailed 

operation of the individual neurons themselves. p 286-7.” Proposals span a range of sizes, from groups of 

cells that are very small by neural standards (e.g., Georgopoulos and Massey, 1987) to much larger groups. 

Cox, Seidenberg, Rogers (2015, 381-2) suggested that they may be as large as a voxel in a BOLD fMRI 

study: “we take the activation of a single unit to be a model analogue of the mean activity in a population of 

neighboring neurons, similar to that estimated from changes in the BOLD response at a single voxel using 

fMRI.”  

These proposals are vague and arbitrary. Though Cox et al pursued their suggestion with several 

analyses of BOLD signal data that that say support probabilistic/associative  models, it seems hard to 

believe that they are seriously claiming that units are the neurons in a voxel in a BOLD signal study, if for 

no other reason than that voxel size in functional neuroimaging studies has grown substantially smaller as 

technology has advanced, but brains have not changed fundamentally.   

The fundamental problem with all of the proposals about larger numbers of neurons being the units in 

probabilistic/associative models is that, although larger groupings of neurons have some of the properties of 

units in probabilistic/associative  models, none of the sets of neurons that have been proposed as the units in 

these models are known to have all of the properties attributed to units in probabilistic/associative  models. 

For instance, Georgopoulos has shown that information about direction of movement was coded as a 

population vector over a set of 241 neurons (property 2), but there is no evidence that groups of neurons of 

about that size have features that correspond to weight changes in probabilistic/associative  models 

(property 3) or have reciprocal connections to neurons that encode error signals (related to property 4). 
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I have directed my comments towards the lack of correspondence between units in 

probabilistic/associative  models and elements in the brain, but the problem arises the other way around 

too: there are informationally-relevant physiological events that are not clearly modeled in 

probabilistic/associative  approaches. For instance, theta phase precession -- the time a neuron fires 

relative to the phase of theta rhythm (6–10 Hz) oscillations in the local field potential -- is exhibited by 

spatial cells of the rat entorhinal–hippocampal circuit and reduces uncertainty about the position of an 

animal (Hasselmo et al, 2013). It is not clear how this is modeled in connectionist models. 

The problem of what elements in the brain correspond to units in probabilistic/associative  models is only 

one problem probabilistic/associative  models have in connecting with neurology. Plaut and McClelland (2010a) 

say  

“there are clearly many aspects of the standard PDP framework that do not emulate 

known aspects of neurophysiology: the lack of separate excitatory and inhibitory cell 

populations, the purely linear integration of inputs with no consideration of dendritic 

geometry, the use of a real-valued symmetric activation function, no consideration of 

metabolic constraints, and the propagation of error signals back through forward-going 

connections, to mention only a few . . . as has repeatedly been emphasized, PDP models 

are generally not intended to emulate all aspects of the underlying neural substrate." (p 

287)  

I will return to the implications of this statement in my concluding remarks. 

Symbol-based procedural models: Neurological Plausibility  

The converse of the belief that probabilistic/associative models are neurally realistic is the belief that 

symbol-based procedural models are not. What is said to make them neurally unrealistic is that they postulate 

discrete categories and rules, which, it is claimed, cannot be related to neural elements. I will consider the first of 

these issues here. The question of what elements in the nervous system might encode discrete, unitary categories 

postulated in symbol-based procedural models corresponds to the question of what elements in the nervous 

system might correspond to units in probabilistic/associative models.  

The argument that discrete, unitary categories are incompatible with neurology is linked to the view that 

neural systems encode knowledge as connection weights and activated information as distributed patterns of 

activity. The contrast is between distributed and localist representations. In distributed models, “A concept is 

represented by a pattern of activity over a collection of neurons (i.e., more than one neuron is required to 

represent a concept.) Each neuron participates in the representation of more than one concept.” In localist 

models, “each neuron represents a single concept on a stand-alone basis. The critical distinction is that localist 

units have “meaning and interpretation” whereas units in distributed representation don’t.” (Quotations from 

Roy, 2012, p 551).  

The strongest instantiation of localist representations would be single cells, often called “grandmother 

cells,” a term first used, derisively, by Jerry Lettvin and later popularized by work by Barlow. The term 

“grandmother cell” refers to a neuron that “would respond only to a specific, complex, and meaningful stimulus, 

that is, to a single percept or even a single concept (Gross, 2002, p. 512).” Barlow says “The concept included 

invariance of response for changes in some variables as well as selectivity of response for others, together with 

the idea that these cells are created by processing at a hierarchy of levels (quoted by Roy, 2013).”  

There are many examples of single cell localist coding in the CNS. The first I came in contact with, as a 

graduate student, are the type 2 neurons in the frog’s retina that Lettvin, Maturana and colleagues (1959) found 

responded to stimuli with the characteristics of small moving bugs. Many more examples of single neurons 

that respond to complex biologically salient events or code for complex motor actions are given by Bowers 

(2009, 2010a, 2010b). 
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Localist representations have been documented at high neurological levels. Page (2000), Bowers (2009) 

and Roy (2012, 2013) review results. Striking and much discussed examples are the cells reported by Quian 

Quiroga et al. (2009) that respond selectively to faces of individuals presented from a variety of angles and 

with a variety of features. For instance, one cell in medial temporal lobe responded to pictures of the actress 

Halle Barry even when she was presented as “Catwoman,” one of her roles. Some of these cells respond to 

both pictures and names; e.g., Quian Quiroga et al. (2009) found (separate) cells that responded to both 

pictures of the actress Jennifer Aniston and the Iraqi president Sadaam Hussein and to their names.  

Cells with localist properties are often modeled as the terminals of hierarchies of cells that respond to 

increasingly more complex sets of features, with categorized entities at the top of the hierarchcy. Hierarchical 

organization of neural responsiveness was first reported by Hubel and Weisel (1962) in their work on responses 

of cells in V1 – V3. Poggio and Bizzi (2004) present models that contain cells with broad tuning for elementary 

features and narrow receptive fields that project to cells with broader receptive fields that respond to 

combinations of features and then to cells with even larger receptive fields that respond to shapes in a viewpoint 

invariant way after learning. An example is Riesenhuber and Poggio (1999) who modeled responses of cells in 

IT to complex shapes under rotation (Figure 7).  

 

 

 

Figure 7: Responses of cells in IT to complex shapes under rotation (Riesenhuber and Poggio, 1999). 
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Poggio and Bizzi extend the modeling from higher order visual perceptual categorization to motor planning. 

Several issues have led to confusion about localist and distributed representations. I will touch on three. 

One is that information about complex stimuli that may be coded locally at higher levels of the nervous system is 

distributed at lower levels. For instance, information about the distal visual stimulus that triggers recognition of a 

face is distributed over retinal neurons. Bowers (2009) insightfully points out, however, that this information is 

necessary but not sufficient to recognize a face; the information that the distal object is a face, and whose face it 

is, is not present in the retina. Localist models apply to the representation of this latter type of information. A 

second point of confusion is that many neurons that selectively respond above a threshold also respond to some 

degree to other similar stimuli; i.e., their tuning curves are broad. Bowers (2009) points out that there is a 

difference between what a neuron responds to and what it encodes. Unless the subthreshold activity of a neuron 

is required to recognize a second item, the representation is localist. The third issue is empirical – have enough 

cells been sampled in work that documents localist encoding to rule out extremely sparse coding (i.e., might a 

small number of cells contribute to representing the information that appears to be encoded in one cell)? The 

answer is unknown, and may not be knowable; if it turns out that information is encoded very sparsely rather 

than in single neurons, whether this would constitute a neural correlate of a unitary symbolic representation or of 

a unit in a probabilistic/associative model depends on whether these neurons participate in encoding other pieces 

of information. Localist neurons have also been argued to have several limitations; one, for instance, is the 

ability to represent both instances and categories (i.e, to deal with the type/token issue). Bowers (2009, 2010a, b) 

and Poggio and Bizzi (2004) discuss possible solutions to this problem, which arises in distributed models as 

well, as far as I can see. 

All told, the evidence for localist coding of categorical information is reasonably strong, and provides 

prime facie validity of one important aspect of symbol-based procedural models.  

Concluding remarks 

I began this presentation by outlining several basic psychological phenomena that have been modeled 

within two different frameworks – a symbolic/procedural framework and a probabilistic/associative framework. I 

have argued that there are significant problems within both frameworks in accounting for the nature of concepts, 

and that the probabilistic/associative framework has not, to date, described or explained combinatorial relations 

of categories and concepts. The obvious way to proceed, I would think, would be to pursue both approaches, 

which is, in fact, what scientists are doing. However, there is a sense in at least certain quarters in cognitive 

psychology that it is a mistake to pursue symbolic/procedural models because they are inconsistent with 

neurobiology and therefore cannot be correct, and that neural considerations support probabilistic/associative 

models. In this last section, I will elaborate a bit on this view. 

As the quote from Plaut and McCelland above indicates – “as has repeatedly been emphasized, 

PDP models are generally not intended to emulate all aspects of the underlying neural substrate" – 

advocates of probablilistic/associative models are well aware of the extent to which they are abstractions 

and models of neural events. The question that I think needs to be addressed is not whether this 

approach has any relation to neural events – it clearly is a productive bridging model worth considering. 

The question is whether it corresponds sufficiently well to invoke neural realism as a reason to accept it 

as the sole theoretical framework to use to understand human cognition; i.e., is it so well founded 

neurologically, and the alternative so poorly neurologically connected, that we should discount models 

developed in the symbolic/procedural framework or invoke neural considerations in adjudication 

between those models and ones developed in the probabilistic/associative framework (with inevitable 

advantage to probabilistic/associative models)? I have argued that we should not. On the one hand, 

probabilistic/associative models models encounter significant problems in modeling neural phenomena. 

Conversely, there is not-unreasonable evidence that a key feature of symbolic/procedural models has a 



 

 19 

neural correlate. Probabilistic/associative models have been inspired by results in the neuroscience to a 

much greater extent than symbolic/procedural have. Whether they are actually neurally more realistic is 

another question, and an open one. Neural facts do not rule out either class of models and, as far as I can 

see, do not favor one over the other. 

A corollary of this conclusion is that the fact that the neural basis for a feature of a model is 

unclear is not a strong argument that that feature is incorrectly postulated in a theory of cognition; in my 

view, it is an extremely weak argument against the existence of that feature. Specifically, the fact noted 

above, that what aspects of neural tissue might encode rules remains very unclear, has little-to-no value 

in adjudicating between models that do and do not postulate rules. These models need to be evaluated 

for their descriptive and explanatory value regarding the phenomena that constitute their domain of 

science. Adding rules incurs costs in terms of degrees of freedom and numbers of variables in a model, 

and perhaps incurs a special cost because of the power of rules. Whether a theory containing rules 

should be accepted requires balancing these costs against its descriptive and explanatory successes. This 

is not an easy task, but the absence of neural correlates of rules does not weigh in the process. At this 

time, arguably, critical elements of all theories remain in search of neural correlates; accordingly, if 

neural correlates are required for a theory to be considered, we might reject all existing models. Clearly, 

this would be a mistake. There was no known biological mechanism that could be the basis of Mendel’s 

laws at the time he developed them, but those laws described and explained important phenomena. 

On rare occasions, advocates of probabilistic/associative admit that, at their core, they take the 

position I am advocating about what data theories are responsible for. For instance, Plaut and 

McClelland (2010b) say: 

neural verisimilitude per se has not been our primary goal; rather, the [PDP] approach is 

directed first and foremost at accounting for performance on cognitive tasks as it occurs 

in real time, how performance changes over the course of normal and abnormal 

development and in adulthood, as well as addressing individual differences and the 

consequences of brain damage. (p 289)  

Despite our apparent agreement about the data that models are responsible for, Plaut and 

McClelland and I disagree about the relevance of neural correlates in adjudicating between theories. On 

the next page of their article, Plaut and McClelland appeal to neurological plausibility in arguing about 

probabilistic/associative and symbolic/procedural solutions to the type/token problem: 

One common variant of localist theory [allocates] a localist unit to each separate 

experience with each instance of every different type of entity and then [allows] partial 

activation of each instance to play a role in determining the output of the system . . . 

To us, this idea really does not seem biologically plausible (p 290). 

I have no idea why it is any more or less plausible than other ideas that have been suggested about neural 

correlates of types and tokens. 

My sense is that advocates of probabilistic/associative models invoke neural considerations in arguing for 

their models because they believe deeply that their models are neurally realistic. Consider the following 

astonishing statement by Rogers and McClelland (2014). They say the brain “contains 10–100 billion neuron-

like processing units (p 1063).” The significance of this statement is likely to escape the reader on an initial 

superficially-to-moderately deep reading (as I suspect it did the authors). On reflection, it is a reification of their 

model, on steroids. The last I looked, brains contained actual neurons, not “neuron-like processing units.” The 

model contains “processing units.” Whether they are “neuron-like” – and, more broadly, whether the ensemble of 

features of these models corresponds to neural structures and neurophysiological functions -- are open questions.  
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A more reasoned, and reasonable, statement is found in Plaut and McClelland (2010b): “The PDP 

approach, for us, is grounded in the belief that certain computational principles of neural systems are 

fundamental to explaining human cognitive performance. p 289)” Accepting this, we need to ask what the 

“computational principles” of neural systems are and which are “fundamental to explaining human cognitive 

performance.” Distributed representations? Back propagation with unsupervised learning? Or feedforward 

processing to localist neurons that encode combinations of features from lower levels? I will end with the 

charitable and ecumenical, if theoretically tepid, thought that currently available neurological data are 

compatible with both types of models. 
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